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ABSTRACT 

The physical and theoretical reasons for being interested in lattice cal- 
culations of glueball properties are briefiy reviewed. Some desirable traits 
of that non-experts can look for in numerical calculations are pointed out. 
The Status of glueball spectrum calculations in lattice gauge theor; is sum- 
marized by presenting a plot of dependence of mass ratios on the finite size 
of the box. 
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1 Introduction 

Almost everyone expects the force that confines quarks to confine gluons as well. How- 
ever, the resulting bound states-the glueballs-have not yet been convincingly detected 
in experiments. Typical glueball candidates include fe(991) [l], 7(1440), fi(1’720) and 
the G resonances [z]. The interpretation of these resonances would be easier if there 
were reliable, ab initio calculations of the glueball masses. One should not forget that 
the mechanism that binds gluons into glueballs (i.e. confinement) is non-perturbative 
and field-theoretic. Consequently, the calculations must be non-perturbative and field- 
theoretic to be either reliable or ab initio. 

Many of the theoretical contributions to this conference are based cm “QCD-in- 
spired” models. This talk is an update of results from numerical work in lattice gauge 
theory. Unlike many of the models, lattice QCD is QCD. Of course, there are uncer- 
tainties associated with the calculations, and a good calculation includes a thorough, 
honest estimate of the uncertainty. 

Almost all of the work reviewed here makes an approximation that is di&x& to 
justify: the quarks are left out. Inasmuch as these calculations use the non-perturbative 
quantum field theory of gluons, QCD motivates them more than the models. The 
solution of this pure gauge theory is certainly a necessary lirst step on the road to 
solving QCD. Indeed, the first round of lattice calculations with quarks are emerging. 
They indicate that intermediate mass quarks do not change mass ratios significantly. 

The presentation starts with a brief technical review, aimed at non-experts. We 
shall discuss the framework, paying attention to systematic details. We hope that 
this approach better prepares the reader for interpreting results in lattice gauge theory 
realistically. We then present a compilation of results for the string tension and the Of+ 
and 2++ glueball masses. 

2 Gauge Theory on a Lattice and in a Box 

Lattice gauge theory is a generally applicable scheme for non-perturbative calculations 
in quantum field theory. The ultraviolet divergencies are regulated by replacing (Eu- 
clidean) space-time with a discrete lattice. For computer simulations the “space-time” 
is usually a tonx- a finite box with periodic boundary conditions 

R4 + T4 -+ Ng x NT lattice. (1) 

Writing a for the lattice spacing, L = Nsa is the physical size of the spatial volume, 
and, as always in the Euclidean formalism, the time extent T = NT~ is related to the 
physical temperature 0 as follows: T = l/O. 

The reason for replacing infInite space-time by a lattice inside a torus is to obtain a 
finite number of degrees of freedom. We do this not just because the computer demands 
it. Field theory in an iniinite space describes an uncountably infinite number of degrees 
of freedom. Such a system can be described mathematically as the limit of a sequence 
of systems with a finite number of degrees of freedom. From this perspective renormal- 
ization is no longer a mystery, but a relationship between physically equivalent systems 
in said sequence. In their numerical work, lattice gauge theorists ask the computer to 
calculate several physical quantities in a subsequence of these systems. By studying the 
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results, we hope to obtain predictions of, say, glueball masses, in the limits where a -+ 0 
andL+ca. 

On the lattice natural units are set by the l&tile spacing a. If A4 is a mass, in MeV, 
then the lattice calculation can only determine the product Ma, where a is the lattice 
spacing. Mass ratios m,a/Ma = m,/M are the natural predictions, and one must then 
choose one mass M (“the mother of all physical quantities”) to set the scale before 
comparing with experiment. One trades in 90 for M, completely analogously to trading 
in the bare coupling eo of QED for the fine structure constant a = l/137. Furthermore, 
from the asymptotic freedom of non-Abelian gauge theories, one knows that reducing 
the bare coupling 90 reduces the lattice spacing a. 

On the torus the rotational symmetry is reduced to cubic symmetry. (The hyper- 
cubic lattice breaks the symmetry likewise.) Hence the states are classified by cubic 
symmetry quantum numbers, rather than spin J. The cubic group has only five irre- 
ducible representations, denoted by Al, AZ, E, Tl and T2, with dimensions 1, 1, 2, 3, 
and 3, respectively. For large enough L (and sma.lI enough a) one expects restoration of 
rotational symmetry, which is signaled by “accidental” degeneracies of cubic multiplets. 
For example, an E-doublet must combine with a Tz-triplet to form the spin-a-quintet. 
To emphasize the need to obtain rotational symmetry restoration, we shall use the cubic 
labels: A1 for the scalar, and E and 2’2 for the two states that ought to form the tensor. 
On the other hand, the quantum numbers P and C are respected by the torus and the 
lattice, so they wilI be denoted by superscripts, in the customary way. 

3 Numerical Work 

In numerical work one generates an ensemble of configurations {V,(z)}(“), n = 1,. . . , 
N cod, distributed with weight ews. (The U,( ) z re p resent the gauge field on a lattice.) 
The path integral for a correlation function is estimated by 

C,(t) = (q(t) Q,(O)) = & F *:ct; {Ud=)P)) *40; W,(~)l’“‘) (2) 

where Q, is an interpolating field operator for states with quantum numbers denoted 
by T. E,q. (2) expresses Monte Carlo integration with importance sampling of the path 
integral; as Ncod - co the right-hand side converges to the left-hand side. At large 
enough t the correlation function takes the form 

G(t) = I(~,lI~~IO)Iz~xP(-ml,,t). (3) 

Fitting eq. (3) yields the lowest mass ml,, in the channel with T quantum numbers. 
Before meaningful numbers can be extracted, one must step through a sequence of 

lattices, as discussed above. In a rigorous definition of the continuum quantum field 
theory, one would take limits; the following list denotes them that way and in the 
“rigorous” order: 

1. Nc,,r -t co; in this limit the Monte Carlo integration becomes exact. The right- 
hand side of eq. (2) yields the correct result for the lattice theory. 

2. a + 0; this is the continuum limit, but it must be approached with L = Nsa and 
2’ = NT~ held fixed. Hence, the lattice size parameters Ns and NT must increase 
as l/a. 
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3. Nra = T + co, the zero temperature limit; except in work relevant to the QCD 
phase transition at a non-zero temperature Q, in which case T = l/O. 

4. Nsa = L + co, the infmite volume limit. 

Treated strictly as limits, all of these steps require an infinite amount of computer time; 
otherwise they introduce uncertainties. The uncertainty from Limit 1 is statistical, 
because it decreases as l/a. The statistical error can also be reduced by variance 
reduction techniques [3]. The uncertainties of Limits 2-4 are systematic. They are best 
controlled by systematic study of a, 2’ or L dependence, using a sequence of lattices. 

A previous review on this subject provides scxne rules of thumb, indicating when 
each kind of error has become tolerable [4]. 

In addition to the non-zero a and finite L systematic effects, there is also some error 
associated with truncating eq. (3) to one state. One can make this error smaller that 
the statistical uncertainty by requiring 

m.rr(t) = h (cv;;)a)) (4) 

to be constant in t. If so, one state dominates, and estimates of the mass ml,, and its 
statisticaluncertainty can be obtained from a fit. Incidentally, these fits must take into 
account that fact that the Monte Carlo estimates for C?(t) and C,(t + a) are highly 
correlated. 

4 Results from SU(3) 

A nice way to disentangle the various effects is to plot dimensionless, but physical, ratios, 
say m,/M. For fixed a one can map out a set of points by varying L; a dimensionless 
measure on the volume would be ZM = LM = NsaM. Then, by varying a also, one 
can get a sequence of curves, whose limit gives the continuum limit. The large L value 
of m,/M, read off the continuum curve, can be compared to experiments. 

Fig. 1 is a plot along these lines, compiling results for glueball masses and the string 
tension from several groups for the SU(3) gauge group. It is an update of the figure 
presented before [4, 151, using ze = La as the measure of the volume. The points 

are from work done in a range of lattice spacing rsxghly 0.12 fa,& (12 O.o5 f& 
The curves are the result of analytical calculations [13]. These calculations start with 

Lfischer’s perturbatively derived effective Hamiltonian for the zero-momentum, modes 
of the gauge field 1161, but the spectrum is obtained non-perturbatively [14]. Indeed, 
for a theorist the left third of fig. 1 is extremely interesting. Two non-trivial non- 
perturbative approaches to gauge field theory, with completely different approximations, 
give essentially the same gluebalI spectrum, in the regime where both are valid. 

There are several striking features of the results. First, the ratio &?/ma:+ is 

surprisingly constant for .zn > 0.6. Second, for 0.2 < z& < 2.0 the two multiplets 
that should fxm the tensor glxeball arc not ;t all degenerate. But in the region 1.3 < 
za < 2.8 the mass of the E representation changes by a factor of two and for za > 3 
the mu++ and mr;+ agree within statistical errors. The crosscwer region is not in a 

surprising place, L rz 

J77, 

1 fm, but it is intriguing that mu++ behaves so differently from 
m,:+ and y++. 
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Figure 1: Plot of dimensionless ratios Ji7/ 

zG = L&?. The symbols are asterisks [5], 

mAf+, m~++/m~:+ and mr2+/mAf+ vs. 

solid (Ts) and open (K and E) squares 161, 
solid triangles [?‘I, open triangles 161, four-pointed stars [9], hexagons [lo], circles ill], 
and six-pointed stars 1121. The curves are analytic results [13] v&d in small volumes 

il41. 

Taking z~i7 > 2.6 as close enough to the infinite volume, and averaging, these data 

yield a/m,,++ = 0.308 f 0.020 and m2++ /m,++ = 1.543 l 0.082. The subscripts now 
refer to spin, because the degenerate E and 2’2 masses suggest restoration of rotational 
symmetry. Setting the scale with fl= 420 MeV gives predictions of m,++ = 1370 IIZ 
90 MeV and mz++ = 2115 i 125 MeV. These values are tantalizingly close to resonances 
reported by GAMS [2], but it would be imprudent to draw exciting conclusions. 

One series of points, the six-pointed stars [12], are taken from one of the first papers 
to include quark fields in the calcu.lations. The quark mass is not yet especially small, so 
it is perhaps not too surprising that the ratios are compatible with pure gauge theory. 

5 Concluding Remarks 

The overall status in these calculations has not changed much in the past two or three 
years. Some obvious challenges have been left untouched. First, no one has tried to 
understand, in detail, the physics in finite volumes, where the mE++ changes so much. 
Second, there are still no results with presentable estimates of the uncertainties for 
glueball states with exotic J PC These states cannot mix with qq states, and hence the 
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pure gauge predictions ought to be more reliable. Unfortunately, these states seem to 
lurk under the statistical noise of lattice Monte Carlos, just as they seem to lurk in the 
backgrounds of experiments. 

The next round of lattice calculations of glueball properties will probably be those 
including intermediate mass quarks. These calculations will encounter the same kinds 
of challenges as experiments do. The glueballs will not be the lightest states with their 
quantum numbers; some multi-pion state will be lighter. Unambiguous demonstration 
of a gluebalI with normal Jpc will require the extraction of two states: the “mostly & 
and the “mostly gg.” Indeed, I question whether the attribute “mostly” willmake sense. 
Since the binding mechanism (i.e. confinement) is a non-perturbative phenomenon, so 
is the mixing mechanism. Furthermore, the coupling is somewhat strong, so the flavor 
singlet mesons are likely far from the pure gg or pure q~ limits. A best description of 
their structure offered so far is Isgur’s “brown muck.” 
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